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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square mete
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REQUIREMENTS FOR DETERMINING AEROSOL
RADIATIVE FORCING OF CLIMATE CHANGE

Perturbation of net irradiance at the top of the atmosphere
(TOA) due to anthropogenic aerosols.

Accuracy better than = 0.5 W m™
(Schwartz, AGU, Fall, 2003; JAWMA, 2004).

Based on determining climate sensitivity to = 30%.

Hypothesis: Forcings of troposphere—surface system are
additive and fungible 1n global-annual average.

Requirement. Anthropogenic aerosol radiative flux perturbation
as a function of space (360" x 180°) and time (24 X 365).

Challenges: Aerosol forcing is highly variable in space and time.

Total upwelling shortwave irradiance is highly variable
in space and time.
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APPROACHES TO DETERMINE AEROSOL
DIRECT RADIATIVE FORCING

1. Satellite Irradiance Method
Satellite determination of upwelling 1rradiance.

Compare to modeled aerosol-free irradiance.

STRENGTHS LIMITATIONS/CONCERNS

Global coverage. Requires model of total upwelling clear-sky
irradiance including surface irradiance.

Satellite calibration.

Scene contamination by clouds
(wide FOV).

Bias toward low humidity (cloud free).
Aerosol 1rradiance 1s small fraction of total.
Sparse temporal coverage.

No attribution to anthro.
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AEROSOL FORCING FROM SATELLITE
IRRADIANCE

Annual-average difference between measured irradiance and model
without aerosol for cloud-free sky — Global averag am

—% -2 2 4 6

GCM - ERBE
Haywood et al., Science, 1999

No attribution to substances.
Difference field incorporates all errors in modeled irradiance.
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APPROACHES TO DETERMINE AEROSOL
DIRECT RADIATIVE FORCING (cont’d)

2. Satellite AOT Method

Satellite determination of aerosol contribution to path radiance.

Model aerosol radiance to aerosol optical thickness (AOT).
Model TOA forcing from AOT.

STRENGTHS LIMITATIONS/CONCERNS

Global coverage. Non-aerosol contribution to path radiance.

Radiance-to-AOT conversion.

Sensitivity to aerosol optical properties.
Accuracy of satellite AOT.
AQOT-to-forcing conversion.

Sensitivity to aerosol optical properties.
Sparse temporal coverage.
No attribution to anthro.
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COMPARISON OF SATELLITE AND GROUND BASED
MEASUREMENTS OF AEROSOL OPTICAL THICKNESS

Monthly-mean AVHRR measurements over oceans (550 nm) vs. AERONET
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COMPARISON OF SATELLITE AND GROUND BASED

MEASUREMENTS OF AEROSOL OPTICAL THICKNESS

AVHRR-1
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Satellite data at 550 nm, AERONET data mean of 440 (500) and 670 nm
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COMPARISON OF SATELLITE AND GROUND-BASED
MEASUREMENTS OF AEROSOL OPTICAL THICKNESS
Individual measurements over land stations
MISR data at 558 nm, AERONET data interpolated from 440 and 675 nm
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Accuracy within £0.02 £0.10 AOT (excluding outliers and sites
influenced by desert dust).
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APPROACHES TO DETERMINE AEROSOL
DIRECT RADIATIVE FORCING (cont’d)

3. Ground-based AOT Method

Ground-based measurement of AOT.
Model TOA forcing from AOT.

STRENGTHS LIMITATIONS/CONCERNS
Unequivocal AOT AQOT-to-forcing conversion.
Temporal coverage Sensitivity to aerosol optical properties.

Sparse spatial coverage.
No attribution to anthro.
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AEROSOL OPTICAL DEPTH

Determined by sunphotometry
North central Oklahoma - Daily average at 500 nm
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FORCING PER OPTICAL DEPTH

Global average, cloud-free sky - Scattering aerosol
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Forcing per optical depth depends rather strongly on particle size.

Forcing accuracy 0.5 W m-2 requires optical depth accuracy 0.005 - 0.01
(0.01 - 0.02 for 60% cloud cover).



FORCING PER OPTICAL DEPTH

Global average, cloud-free sky - Absorbing aerosol
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Forcing per optical depth depends rather strongly on particle size —
and also rather strongly on aerosol absorption.



APPROACHES TO DETERMINE AEROSOL
DIRECT RADIATIVE FORCING (cont’d)

4. Surtace Forcing Method
Ground-based measurement of aerosol surface forcing.
Model TOA forcing from AOT.

STRENGTHS LIMITATIONS/CONCERNS
Unequivocal surface forcing Surface-to-TOA forcing conversion.
(Rayleigh background). Sensitivity to aerosol optical properties.

Sparse spatial coverage.
Sparse temporal coverage (cloud free only).
Bias to low RH.

No attribution to anthro.
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AEROSOL FORCING OF SURFACE IRRADIANCE

Dependence on aerosol optical thickness
Cloud-free sky, DOE ARM Site, North Central Oklahoma
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Aerosol scattering , increases diffuse
irradiance.

Aerosols decrease total surface irradiance ( + diffuse) mainly
because of upward scattering (top-of-atmosphere forcing) and to
lesser extent enhanced atmospheric absorption.



APPROACHES TO DETERMINE AEROSOL
DIRECT RADIATIVE FORCING (cont’d)

5. In-situ Measurements Method

In-situ measurement of aerosol optical properties,
[chemical, microphysical properties].

Radiation transfer modeling of forcing.

STRENGTHS LIMITATIONS/CONCERNS
Accurate forcing estimates  Sparse spatial coverage

Account for cloudiness Sparse temporal coverage

[Account for f(RH)]

[Attribution to anthro]




INTERCOMPARISON OF BROADBAND SHORTWAVE
FORCING BY AMMONIUM SULFATE AEROSOL
Normalized global-average forcing: W m-2 / g(SO%{) m-2or W/ g(SO%{)
Aerosol optical depth 0.2; surface albedo 0.15
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Standard deviation ~8% for 15 models at radius ~ 200 nm.

Boucher, Schwartz and 28 co-authors, JGR, 1998

Radiation transfer models agree closely for well specified aerosol.
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APPROACHES TO DETERMINE AEROSOL
DIRECT RADIATIVE FORCING (cont’d)

6. Chemical Transport Modeling Method

Chemical-microphysical modeling of aerosol loading and
properties

Radiation transfer modeling of forcing

STRENGTHS LIMITATIONS/CONCERNS
Spatial coverage Accuracy of modeled aerosol loading and
Temporal coverage properties:
Account for cloudiness and ~ Sources .

f(RH) Transformation

Removal

Accurate forcing estimates
Need to evaluate model!

Attribution to anthro
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MODEL-OBSERVATION COMPARISONS

BNL CTM driven by assimilated meteorological data
Observed 24-hour sulfate mixing ratio, June-July 1997
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MODEL-OBSERVATION COMPARISONS

5083 24-Hour sulfate mixing ratio in BNL CTM driven by
assimilated meteorological data - June-July 1997
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56% of comparisons within factor of 2; 92% within factor of 5.
Benkovitz et al., JGR, in press, 2004
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SIZE DISTRIBUTIONS

Comparison of Measurement and Retrieval from Model
At 3 Altitudes near Nashville TN
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SEASALT AEROSOL MASS CONCENTRATION

Modeled and observed annual concentrations

From IPCC (2001) intercomparison
40 \ \ \ \ ] 30 |
E L 8%38- Prospero et al. E x GISS
I —— GSFC ] x GSFC
0f 22 BCAWGRANTOUR : o ECHAW
[ ———— PNNL ] GRANTOUR \
° . 1 0| ULAQ . _
E | >3 . 20 o PNNL
c L /// A \\\ ] €
_g 20— / J A\ 5 K\ ] ()] |
g L /// s N \ 2 d % * x
§ E /// /// \\\ . / ’ E g >\</X
= = - \ 7’ . o
8 L ,’// / \ ,’/ , ] [ |
10 } - /// b :/ /// : = 10 — -
- 4 ________// ] X
0 - %
0 \ \

0 10 20 30
Mmeas/(Hg m'3)

¢ ¢ After throwing out the burdens from models that were outliers in
terms of their comparison with observations, the model results for sea
salt still differed by a factor of 4.9 and 5.3, for diameter less than and
greater than 2 um, respectively. . .. In the upper troposphere . . . the

. range increased to as much as a factor of 20 or more.?”?
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INDIRECT EFFECT

SENSITIVITY OF ALBEDO AND FORCING
TO CLOUD DROP CONCENTRATION
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Indirect forcing is highly sensitive to small perturbations in cloud drop
concentration.
A 30% increase in cloud drop concentration results in a forcing of ~I4A
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Indirect forcing is highly sensitive to small perturbations in cloud drop
   concentration.  
A 30% increase in cloud drop concentration results in a forcing of ~1 W m  .
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CONCLUSIONS AND FUTURE DIRECTIONS
e No silver bullet.

e Radiative measurements must play a key role, but ...

e Chemical transport models, based on understanding of the
pertinent chemical and physical processes and extensively
evaluated by comparison with observations are essential
to interpretation of aerosol radiative influences and
attribution to forcing agents.

THANK YOU

http://www.ecd.bnl.gov/steve/schwartz.html





